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Molecular dynamics(MD) and Navier-Stokes hydrodynamics have been performed to model thermal relax-
ation processes arising from an initially established nonequilibrium stationary state. A nanoscale two-layer
Lennard-Jones(LJ) liquid system was constructed in which the two parts were initially at a different tempera-
ture, with a narrow transitional zone between the two layers that was spatially linear in temperature. The
highest-temperature layer had widths of five or 20 LJ particle diameters. The hydrodynamics model used
parametrized MD-derived transport coefficients and the LJ equation of state as input functions. The temporal
and spatial temperature and density profiles produced by the two methods show good agreement, indicating
that a hydrodynamics description is reliable even for nonstationary phenomena down to the scale of a few
molecular diameters. We found that at certain locations the Navier-Stokes solution predicted that the pressure
and temperature profiles relaxed in a damped oscillatory manner, which we could discern despite the fluctua-
tions in the MD data.
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I. INTRODUCTION

In order to study liquid behavior by computer simulation,
two methods are frequently used. One method is molecular
dynamics(MD) simulation, which applies Newton’s equa-
tions of motion to an assembly of interacting model mol-
ecules. This method is “bottom up,” as it uses parameters
characteristic of the molecules and the intermolecular forces
between them as the starting point. The other method is
based on continuum hydrodynamics(HD) equations, such as
the Navier-Stokes equation. The transport coefficients of vis-
cosity and heat conductivity, and the equation of state are
required to characterize the system in this treatment. In con-
trast to a MD simulation, the HD approach treats the liquid
dynamics from a macroscopic or “top-down” point of view.

An important question is how small does the system have
to be before the coarse-grained HD approach breaks down,
and MD is required? It is therefore of interest to study
whether these two methods provide the same dynamical so-
lution for small systems. There are many studies[1–17] that
have compared these two methods for several typical ex-
amples of nonequilibrium fluids, such as the Rayleigh-
Bénard convection[1–3], the flow pattern behind an obstacle
[4,5], and the Poiseuille flow[6–8]. However, most of these
studies focused on stationary phenomena. In a stationary sys-
tem, the timet dependence of any field such as temperatureT
and mass densityr in the hydrodynamics is zero(i.e.,
]T/]t=0, ]r /]t=0, etc.). There are only a few papers[9–13]
that have compared these methods for nonstationary systems.

In particular, there is no work in which all five fields of
temperatureT, mass densityr, pressureP, potential energy
U, and fluid velocityv have been used in the HD calcula-
tions, and compared with those produced by a corresponding
MD treatment. It is necessary to examine these five fields by
both methods in order to make a thorough comparison be-
tween the two schemes.

The purpose of this paper is to compare by MD simula-
tion and HD calculation nonequilibrium fluids in stationary
and nonstationary cases. In this work we compare all five
fields ofT, r, P, U, andv. As the example of the nonstation-
ary process, we use thermal relaxation from a spatially inho-
mogeneous system that has high- and low-temperature re-
gions. We have calculated this thermal relaxation process,
resolved in space and time, by both MD and HD treatments
and for the same initial conditions.

The outline of the present article is as follows. In Sec. II
we describe the computational details of the MD simulation
and the HD calculation. In Sec. III the results and discussion
are presented. Concluding remarks follow in Sec. IV.

II. METHODS

A. Molecular dynamics simulations

We have performed MD simulations using the Lennard-
Jones(LJ) 12-6 potentialfsrd=4ehss / rd12−ss / rd6j wheree
ands set the energy and length scales of the system, respec-
tively. In the following discussion, the length, the energy, and
the mass are scaled in units of the Lennard-Jones diameters,
the minimum value of the potentiale, and the atom massm.
We used an asterisk(p) for reduced quantities such as the
reduced length r * = r /s, the reduced temperatureT*
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=kBT/e, wherekB is Boltzmann’s constant, the reduced pres-
sureP* = Ps3/e, the reduced mass densityr* = rs3/m, and
the reduced timet* = tÎe /ms2.

The number of particlesN in the cubic unit cell was
100 000, with the usual periodic boundary conditions applied
in the x, y, andz directions. The length of the cubic simula-
tion box wasL* =50; therefore the volume of the box was
V* =125 000 and the average number density in the whole
box wasr* =0.80. The equations of motion were integrated
by the velocity Verlet algorithm, with a time step ofdt*
=0.01. The interaction cutoff radiusrc

* was taken as 4.0, and
cutoff corrections were added to the computed pressure and
potential energy.

In order to calculate the distribution of the fields such as
temperatureTsx,td, we resolved the simulation box into 50
segments along thex axis. The fields of temperatureTk, den-
sity rk, pressurePk, potential energyUk, and fluid velocityvk
along thex direction in thekth slice are determined by

Tk =
1

3kBNk
o
iPk

msṙ i − ṙ 0d2, s1d

rk = m
Nk

Vk
, s2d

Pk =
1

3Vk
o
iPk
Hmsṙ i − ṙ 0d2 −

1

2o
jÞi

r i j
dfsr ijd

drij
J , s3d

Uk =
1

2Nk
o
iPk

o
jÞi

fsr ijd, s4d

vk =
1

Nk
o
iPk

ẋi , s5d

whereNk is the number of particles in thekth sliced region,
Vk is its volume,fsr ijd is the interatomic potential for the
distancer ij ;ur i −r ju between two particles atr i and r j, and
ṙ 0;s1/NkdoiPkṙ i.

Before realizing the nonstationary thermal process, we
had to set up a stationary state containing a high-temperature
region and a low-temperature region, with a transitional zone
on either side, withT linear in x. The usual periodic bound-
ary conditions were applied in they andz directions, so the
system modeled was a hot-cold layer “sandwich.” Velocity
rescaling was used to produce the following initial tempera-
ture profile:

T * sx * d

=5
T0

* , 0 ø x , x1
* ,

sT1
* − T0

*dsx * − x1
*d/sx2

* − x1
*d + T0
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* ,

T1
* , x2

* ø x , x3
* ,

sT1
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*dsx * − x4
*d/sx3

* − x4
*d + T0

* , x3
* ø x , x4

* ,

T0
* , x4

* ø x ø L * .
6
s6d

In order to investigate the relaxation process in several case

studies, we used four sets of values for the parameters(T0
* ,

T1
* , x1

* , x2
* , x3

* , x4
* , L* ) in Eq. (6), as given in Table I. Systems

1 and 3 have broader high-temperature regions(width of 20)
than 2 and 4(width of 5). Systems 1 and 2 have a bigger
difference between high- and low-temperature regions than
systems 3 and 4(ratio of 2.0 and 1.2, respectively). 20 000
MD time steps were performed in systems 1 and 2sT1

*

=2.0d and 10 000 MD time steps in systems 3 and 4sT1
*

=1.2d to establish stationary states. The densities of the lay-
ers naturally adjusted to the temperature differences. The
time-averaged pressure gradient in thex direction also re-
laxed to zero in two layers and in the transitional boundary
regimes.

After achieving the stationary states in these systems, we
turned off the temperature control and performed microca-
nonical MD simulations for 20 000 time steps, i.e., untilt*
=200, for all parameter sets. We observed the thermal relax-
ation processes during this phase of the simulation.

B. Hydrodynamics calculations

In order to mimic the MD-generated states by the HD
treatment, we solved the following one-dimensional con-
tinuum equations:

]Q

]t
+

]E

]x
+

]R

]x
= 0. s7d

Each term in Eq.(7) is

Q = 3 r

rv

e
4, E = 3 rv

P + rv2

se+ Pdv
4 ,

R=3
0

− S4

3
h + zDvx

− S4

3
h + zDvxv − kTx

4 , s8d

TABLE I. Parameters of the temperature control for Eq.(6).

System 1 System 2 System 3 System 4

T0
* 1.0 1.0 1.0 1.0

T1
* 2.0 2.0 1.2 1.2

x1
* 10.0 17.5 10.0 17.5

x2
* 15.0 22.5 15.0 22.5

x3
* 35.0 27.5 35.0 27.5

x4
* 40.0 32.5 40.0 32.5

L* 50.0 50.0 50.0 50.0
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where e;rfs3/2mdkBT+s1/mdU+s1/2dv2g is the total en-
ergy, h is shear viscosity,z is bulk viscosity,k is thermal
conductivity, and the subscriptsx of v and T mean thex
derivative. The first equation of Eq.(8) introduces the mass
conservation. The second equation is the momentum-
conservation equation, that is, the Navier-Stokes equation,
and the last equation enforces energy conservation.

In order to realize the same initial conditions as in the MD
simulation, the side length of the cubic simulation cell was
taken asL* =50, with the usual periodic boundary condi-
tions in all three directions. The space was decomposed into
200 segments along thex axis with an interval ofDx*
=0.25 to resolve the HD fields. The temperature distribution
was determined as in Eq.(6). The velocity field wasvsx,td
=0 because there is no flow in the stationary state of this MD
simulation. As a result of the no-flow condition,vsx,td=0,
the pressure should be constant withx (i.e., ]P/]x=0) which
is derived from the Navier-Stokes equation(8). The initial
values of the fields ofT, r, P, U, andv were determined to
satisfy these conditions. The relationships betweenT, r, P,
andU were calculated using Johnsonet al.’s LJ equation of
state[18].

After obtaining the appropriate initial conditions, the time
development of the HD fields was computed using the Mac-
Cormack algorithm[19]. This algorithm is a predictor-
corrector version of the Lax-Wendroff scheme[20,21] with
an explicit integrator. It has second-order accuracy in both
space and time. It is widely used to solve the Navier-Stokes
equation[22–24], which has viscosity and thermal conduc-
tivity terms, thus involving simultaneous mass and heat flow.

The stateQn+1 at thesn+1dth time step is obtained from
Qn at thenth step as follows:

Ql
* = Ql

n −
Dt

Dx
sEl

n − El−1
n d −

Dt

Dx
sRl+1/2

n − Rl−1/2
n d, s9d

Ql
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1

2
sQl

n + Ql
*d −

1

2

Dt

Dx
sEl+1

* − El
*d −

1

2

Dt

Dx
sRl+1/2

n − Rl−1/2
n d,

s10d

where the subscriptl represents the position of the sliced
segments along thex direction. The time step was set to
Dt* =0.0001, and these equations were solved for time up to
t* =200 (or 2 000 000 time steps). Note that the HD time
step was some 100 times smaller than the MD time step. In
order to check the correctness of our HD calculations and
investigate the influence of the choices ofDt* and Dx*, we
also solved the HD equations with different values of
sDt* , Dx* d=s0.0001,0.50d (0.0002, 0.25), and (0.0002,
0.50). We confirmed that the HD results by these different
values ofDt* and Dx* are the same as one another. There
was no artifact introduced such as artificial oscillations in the
fields. This fact shows that our HD calculations by the Mac-
Cormack algorithm are reliable.

C. Calculations of the transport coefficients

The transport coefficients ofh, z, andk are necessary for
the HD calculations[25–35]. These transport coefficients
were determined by the appropriate Green-Kubo formula
[25–27]. For the shear viscosity we have,

h =
V

kBT
E

0

`

dtkPabstdPabs0dl, s11d
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For the bulk viscosity,
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For the longitudinal viscosity,
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For thermal conductivity,

k =
V

kBT2E
0

`

dtkJastdJas0dl, s17d

where

Jx =
1
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FẋiHmṙi
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Here for two moleculesi and j , xij ;uxi −xju, wherexi is thex
component of the coordinater i, and k¯l means a microca-
nonical ensemble average.

The autocorrelation functions were calculated from mi-
crocanonical MD simulations carried out at several tempera-
tures betweenT* =1.0 and 2.0 and densities betweenr*
=0.60 and 0.90. The cutoff radiusrc

* was 4.0 and a cutoff
correction was included in the pressure tensor. The number
of particlesN was 1000. The equations of motion were inte-
grated by the velocity Verlet algorithm for 2 000 000 MD
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steps. The time stepDt* was reduced with increasing den-
sity, betweenDt* =0.005 and 0.010. The 2 000 000 step-
simulation results were divided into segments of 200 MD
steps. We calculated the autocorrelation functions in each
segment and took the averages from all such segments and
directions,a=x, y, z. The autocorrelation functions were in-
tegrated numerically to obtain the transport coefficients. For
the purpose of estimating the error bars for the transport
coefficients, we carried out the above procedure starting
from five different initial conditions. That is, we performed
the MD simulations for 10 000 000 steps in total at each
density and temperature. The error bars were determined as
the standard deviation from these five different initial condi-
tions.

An example of the autocorrelation function
kdPaa

* stddPaa
* s0dl is shown in Fig. 1 andkJa

* stdJa
* s0dl in Fig.

2 for the state pointr* =0.80 andT* =1.0. These autocorre-
lation functions are statistically zero att* =1.0, which is nec-
essary for the transport coefficients to be correctly deter-
mined.

The values of the transport coefficients are given in Table
II. The longitudinal viscosity is calculated in two ways. One
method is a determination from Eqs.(11) and (13) and the
other one is from Eq.(15). Table II shows the longitudinal-
viscosity values from the two methods, which agree well
within their error bars at every density and temperature(a
useful self-consistency check). In the HD calculations, we
used the values determined from Eq.(15) with a linear inter-
polation for intermediater* and T* values. The error bars in
the transport coefficients are less than 5%. In order to check
the effect of the transport-coefficient error, we also per-

TABLE II. Transport coefficients of Lennard-Jones 12-6 potential. Longitudinal viscosity 4h* /3+ z*
obtained(a) from Eqs.(11) and (13) and (b) from Eq. (15). The numbers in parentheses are the estimated
uncertainties.

r* T* h* z*

4h* /3+ z*

k*(a) (b)

0.60 1.5 0.81(4) 0.72(6) 1.80(7) 1.80(6) 3.51(5)

0.60 2.0 0.863(9) 0.533(29) 1.68(4) 1.71(7) 3.80(13)

0.65 1.5 1.03(5) 0.65(5) 2.02(6) 1.98(10) 4.17(16)

0.65 2.0 1.030(29) 0.55(6) 1.92(9) 1.91(6) 4.39(12)

0.70 1.0 1.20(6) 1.01(4) 2.61(9) 2.68(12) 4.50(18)

0.70 1.5 1.21(8) 0.76(4) 2.37(12) 2.29(6) 4.95(15)

0.70 2.0 1.235(23) 0.62(5) 2.27(6) 2.30(9) 5.30(16)

0.75 1.0 1.52(6) 0.92(11) 2.95(11) 3.01(18) 5.32(26)

0.75 1.5 1.52(11) 0.77(8) 2.79(8) 2.81(3) 5.92(11)

0.75 2.0 1.51(4) 0.65(8) 2.66(13) 2.70(13) 6.14(17)

0.80 1.0 2.05(8) 0.81(5) 3.55(8) 3.57(11) 6.3(3)

0.80 1.5 1.97(7) 0.75(7) 3.39(16) 3.30(12) 6.94(27)

0.80 2.0 1.862(27) 0.65(7) 3.13(7) 3.18(9) 7.11(24)

0.85 1.0 2.76(13) 0.873(25) 4.55(16) 4.64(19) 7.9(3)

0.85 1.5 2.54(5) 0.691(25) 4.07(4) 4.06(7) 8.07(16)

0.90 1.0 4.0(3) 0.94(9) 6.3(4) 6.33(13) 8.76(21)

0.90 1.5 3.25(10) 0.79(7) 5.12(17) 5.11(11) 9.40(25)

FIG. 1. Autocorrelation functionkdPaa
* stddPaa

* s0dl at r* =0.80
andT* =1.0.

FIG. 2. Autocorrelation functionkJa
* stdJa

* s0dl at r* =0.80 and
T* =1.0.
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formed the HD calculation with transport coefficients differ-
ing by 5%.

III. RESULTS AND DISCUSSION

In order to gain some insights into the nature of the ther-
mal relaxation on the molecular scale, the data from the MD
system 1 are shown in Fig. 3. This figure gives snapshots
showing only the atoms that fall within anxy layer that is 6%
of the box side length thick in thez direction. The color
coding indicates the kinetic energy or “temperature”Ti
;mṙi

2/3kB of each atomi. At the stationary statet* =0.0,
many of the atoms in the high-temperature region near the
center are in the red–yellow color range. Many of the atoms
in the low-temperature region near the boundary ofx* =0
and x* = L* are in the blue–green color range. Because the
pressure at the stationary state is, within statistics, constant
across the box in thex direction, i.e.,]P/]x=0, the density is
low in the high-temperature region and high in the low-
temperature region. This can be seen in Fig. 3 for the system
at t* =0. The high-temperature region of the cell is relatively
sparsely populated compared with the cold regions. During
the nonstationary phase of the simulation, the distributions of
T andr can be seen to be relaxing toward a spatially uniform
value as shown in the snapshots att* =20. Finally, after a
simulation time oft* =200, the system has essentially fin-
ished relaxing to a uniform distribution of particles through-
out the cell.

Figures 4–7 show the distributions of the five fields ofT*,
r*, P*, U*, and v* in the systems 1–4, respectively. Each

system has the temperature distribution given in Eq.(6) at
t* =0. The highest temperature in Figs. 4 and 5 isT1

* =2.0,
while that in Figs. 6 and 7 isT1

* =1.2. The width of the
highest-temperature layer in Figs. 4 and 6 is 20, and that in
Figs. 5 and 7 is 5. These figures show that the density in the
high-temperature region is lower than in the low-temperature
region. The potential energy in the high-temperature region
is higher than that in the low-temperature region. The density
and potential energy are functions of temperature and pres-
sure. As the system is stationary, the pressure is constant
across the system, and therefore the density and potential
energy are solely dependent on the local temperature. The
average velocity at each point is also zero att* =0. It can be
seen that the stationary results by MD and HD calculations
agree very well. Note that there are statistical fluctuations in
the MD data, which are absent in the HD method. All fields
determined by the MD simulations have fluctuations because
they are calculated from a finite number of atoms and finite
number of realizations of the relaxation event.

After removing the velocity scaling, relaxation toward a
new steady state can be observed. The distribution ofT*, r*,
and U* becomes progressively flatter as time passes. The
profiles of P* and v* reflect the predominant flows during
relaxation. All distributions are flat on completion of the
simulation. We can conclude therefore that the MD and HD
calculations represent well the state of the system at all
stages of the relaxation process.

We also checked the effect of small changes in the values
of the transport coefficients on the relaxation profiles pro-
duced by the HD method, using values at the extremes of the
uncertainty bars. We found that the changes in the HD prop-

FIG. 3. (Color) Snapshots of atoms during the thermal relaxation process in the MD system 1. Each atom color depends on its
temperature.
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erty profiles were much less than the fluctuations of the MD
simulations. We also carried out HD calculations of the re-
laxation using constant values for the transport coefficients.
In this case, the agreement was not so good, which can be
appreciated by the relatively large variation of the transport
coefficient values(typically by factors of 2 or 3) in the rel-
evant density and temperature range, as shown in Table II.

Figures 8–11 show the time development of each field at
certain values ofx. They are at the center of the low-
temperature regionx* =0, the center of the high-temperature
regionx* =25, and the middle of the transitional temperature

regions, taken asx* =12.5 for the systems 1(Fig. 8) and 3
(Fig. 10) and atx* =20 for the systems 2(Fig. 9) and 4(Fig.
11). The relaxation in the high-temperature region starts from
T* =2.0 in Fig. 8 and Fig. 9 and fromT* =1.2 in Fig. 10 and
Fig. 11. A microscopic system always has fluctuations on a
shorter time scale than that characteristic of the macroscopic
HD relaxation. In Figs. 8–11 the red lines of the MD simu-
lations in all fields show these microscopic fluctuations.
They fluctuate around the black lines of the HD calculations.
In order to compare the MD and HD profiles on the basis of
more comparable fluctuations, we also took local time aver-

FIG. 4. (Color) Distributions ofT*, r*, P*, U*, andv* for system 1 att* =0, 2, 20, and 200. Red and(smoother) black lines are obtained
by the MD simulation and the HD calculations, respectively.

FIG. 5. (Color) Distributions ofT*, r*, P*, U*, and v* for system 2. See the caption of Fig. 4 for further details.
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ages of all the MD fields in blocks of 100dt* =1.0. This
alleviated the fluctuations in the MD data. This time resolu-
tion is now longer than the time scale of these microscopic
fluctuations but shorter than that of macroscopic HD behav-
ior. These time averages are shown as blue lines in Figs.
8–11. As the fluctuations of the time-average fields are now
much smaller than those of instantaneous values, it can be
seen that the relaxation processes of all fields produced by
the MD and HD methods agree well at every position. In
particular, the HD fields agree with the time-average MD
fields much better than with the instantaneous MD fields.
Our results indicate that the HD calculation based on the

Navier-Stokes continuum equations is essentially satisfied
even for such small and nonstationary systems. Our system
size ofL* =50 corresponds toL=17 nm in the case of argon.

As we discussed above, the agreement of the MD and HD
treatments is very good. There are slight differences, how-
ever. The potential energy in the system 2 att* =0–2 and in
the region ofx* =22–28 obtained by the MD simulation is
less than that of the HD calculation as shown in Fig. 5(d).
This difference can be understood as follows. The curvature
of the temperature and density profiles in system 2 in these
regions is the largest of the four systems as shown in Fig.
5(a) and in Fig. 5(b), respectively. The MD potential energy

FIG. 6. (Color) Distributions ofT*, r*, P*, U*, and v* for system 3. See the caption of Fig. 4 for further details.

FIG. 7. (Color) Distributions ofT*, r*, P*, U*, and v* for system 4. See the caption of Fig. 4 for further details.
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value clearly depends on the surrounding temperature and
density distributions. On the other hand, the HD potential
energy value is estimated from the equation of state using the
temperature and density value at a given location. In regions
where the local density is decreasing rapidly from a plateau
value, the HD approach will overestimate the average local
particle density and hence the potential energy and pressure.
This problem could be alleviated by using an average local
density in the HD treatment, as is done in, for example, the
density functional approach, e.g.,[36].

The velocitiesv* at x* =0 and 25 are zero at all times in
the MD and HD calculations as shown in Figs. 4(e)–11(e).
The net fluid flow is in the opposite direction on either side
of the centerline. The differences between the field values of
T*, r*, and U* at the beginning and end of the relaxation at
the middle of the transitional temperature regionsx* =12.5d
in Fig. 8 (system 1) are smaller than those at this middle

point sx* =20d in Fig. 9 (system 2). The situation is much the
same on comparing Fig. 10(system 3) and Fig. 11(system
4). This feature is clearly caused by the difference in the
widths of the low- and high-temperature plateau between
systems 1 and 2, and 3 and 4.(The width of the transitional
temperature zone is the same in each case.) The width of the
high-temperature region is the same as that of the low-
temperature region in the systems 1 and 3.(Both layers have
a width of 20.) Therefore, the temperature changes very little
in the middle of the transitional temperature region. On the
other hand, in the systems 2 and 4, the width of the high-
temperature region is 5 and smaller than that of the low-
temperature region which is 35. These values consequently
change more in the systems 2 and 4, even at the middle of
the transitional temperature region.

In Figs. 8–11, a damped oscillatory decay can be seen for
some of the data generated by the HD method. In particular,

FIG. 8. (Color) Time development ofT*, r*, P*, U*, and v* for system 1 atx* =0, 12.5, and 25. Red lines are the instantaneous MD
data, blue lines are the time average of MD data taken in each interval of 100dt* =1.0, and(smoother) black lines are obtained by the HD
calculation. In the cases ofx* =12.5 and 25, the instantaneous MD data are not illustrated to show the time-average MD results clearly.

FIG. 9. (Color) Time development ofT*, r*, P*, U*, and v* for system 2 atx* =0 20, and 25. See the caption of Fig. 8 for further
details.
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notice the oscillations ofv* at x* =12.5 in the system 1 and
3 and atx* =20 in the system 2 and 4 and those ofP* at
these and other locations. In order to characterize these os-
cillations in more detail, we show all fields atx* =20 of the
system 2 obtained by the HD calculations(black lines) for
the initial part of the decay in Fig. 12. The temperatureT*
and densityr* also have oscillations, in phase withP*,
while U* does not have such a clear oscillation behavior. The
velocity is substantially out of phase with theP* data. All
fields of instantaneous MD data(red lines) and those of the
time-average MD data(blue lines) in the time interval of
100dt* are also shown in Fig. 12. Fluctuations are inherent
features of the MD method, and these oscillations are rela-
tively difficult to discern within the noise in the instanta-
neous MD data. However, taking a time average of the MD
data makes it easier to detect these HD oscillations in the
MD results as well. The time averages ofP* and v* in the
MD data show clearly very similar oscillations to those of
HD calculations. The time averages ofT* and r* also indi-
cate the oscillations as the HD results, although they are not

as clear asP* and v*. The time average ofU* does not have
such an oscillation. This is also consistent with the HD treat-
ment. A possible reason for these oscillations is as follows.
The heat flows outward from the centerline, because the tem-
perature in the center region is higher than the surroundings.
At the same time, there is a fluid flow toward the center
because the density in the center region is lower than the
surroundings. An initial outward heat flow causesT* and P*
in the center region to decrease initially. Then there is a net
inward flow from the colder regions, reflected in thev* data,
which causes theP* in the center region to increase again
and also makesr* in the center region increase somewhat.
This increase ofr* acts to reduce the rate of the temperature
reduction, in fact the temperature is almost constant for a
while. The inward fluid-flow velocityv* progressively de-
creases and there is an inversion ofP* and v*; P* and T* in
the center region decrease again because the outward heat
flow starts to dominate over the inward fluid flow. This pro-
cess is repeated so thatP* and v* relax in a damped oscil-
latory manner out of phase with each other. The pressure and

FIG. 10. (Color) Time development ofT*, r*, P*, U*, and v* for system 3 atx* =0, 12.5, and 25. See the caption of Fig. 8 for further
details.

FIG. 11. (Color) Time development ofT*, r*, P*, U*, and v* for system 4 atx* =0, 20, and 25. See the caption of Fig. 8 for further
details.
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velocity oscillations we think are therefore the result of a
balance between the inward flow of fluid caused by the den-
sity relaxation and the outward heat flow caused by the tem-
perature relaxation. In this process,T* and r* oscillate in
phase withP*. BecauseU* is an increasing function ofT*,
and a decreasing function ofr*, the contributions of theT*
andr* oscillations toU* tend to cancel out. As a result,U*
is a relatively smooth monotonically decaying function.

IV. CONCLUSIONS

We have investigated hydrodynamic effects on the nano-
scale using molecular and coarse-grained continuum level
descriptions of a Lennard-Jones potential fluid. The particu-
lar transient effect we considered was thermal relaxation
from an initial inhomogeneous temperature distribution. We
performed molecular dynamics simulations and solved the
Navier-Stokes equation for systems of various initial tem-
perature profiles. We made a systematic comparison between
the spatial and temporal variations inT, r, P, U, andv for
the MD and HD methods. The fields from the two techniques
agreed well with each other provided that the equation of
state and transport coefficients(shear and bulk viscosity and
thermal conductivity obtained from separate simulations) are
made functions of density and temperature.

These results strongly suggest that the Navier-Stokes de-
scription is reliable down to the nanometer scale not only for
stationary case, but also for nonstationary phenomena. Of
course we have only considered thermal relaxation, and one
would need to consider other processes, such as shear flow,
to further validate this conclusion in all its generality. One
could argue, based on this result, that for certain systems,
MD could be replaced by the continuum approach to study
nonstationary liquid behavior, considerably reducing the
computational cost. The continuum method is also effective
at highlighting quite subtle transients in the temporal behav-
ior of the fields(such as damped oscillations manifest in the
pressure and velocity at certain locations in the system) that
are obscured by the MD noise. Although the MD simulations
produce local fields fluctuations that are inherent to what is a
truly microscopic system, by taking a local or “block” time
average, we were able to detect the subtle transients observed
in the hydrodynamic results. The Navier-Stokes solver can
be used on length scales up from the nanoscale, and can be
“tuned” to suit the length or time scale of interest. One could
see this approach being useful in the area of microfluidics
device design, for instance.
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FIG. 12. (Color) The fieldsT*, r*, P*, U*, andv* for system 2
at x* =20 during t* =0–30 reduced time units. Red lines are the
instantaneous MD data, blue lines are the time average of MD data
taken in each interval of 100dt* =1.0, and(smoother) black lines
are obtained by the HD calculation.
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